Tips and tricks for hugo
Tips and tricks for Hugo/PaperMod that I have used. Opening Links in New page Override default behaviour by adding a render-link.html file under layouts. Follow this page for more details. Handle Katex Enable Maths on the markdown page: 1 2 math: true markup: "mmark" Create a shortcode for katex with {{ .Inner }}. This would ensure all text meant for Katex is not processed. Use shortcode \{\{< katex >\}\} before any katex code. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 \{\{< katex >\}\} # remove \ here $$ \begin{align} q(x_t|x_0) &= N(\sqrt\alpha_tx_{t-1}, (1 - \alpha_t )I) \cr &= \sqrt\alpha_t x_{t-1} + \sqrt{(1-\alpha_t)}\ast\epsilon_t \cr &= \sqrt\alpha_t(\sqrt\alpha_t x_{t-2} + \sqrt{(1-\alpha_{t-1})}\ast\epsilon_{t-1}) + \sqrt(1-\alpha_t)\ast\epsilon_t \cr &= \sqrt\alpha_t\sqrt\alpha_t x_{t-2} + \sqrt\alpha_t\sqrt{(1-\alpha_{t-1})}\ast\epsilon_{t-1} + \sqrt(1-\alpha_t)\ast\epsilon_t \cr &= \sqrt\alpha_t\sqrt\alpha_tx_{t-2} + \sqrt{(1-\alpha_t\alpha_{t-1})}\ast\epsilon_{t-1}^\ast \quad where \thinspace \epsilon_{t-1}^\ast\in N(0, I) \cr &= ... \cr &= \sqrt{\bar\alpha_t}x_0 + \sqrt{(1 - \bar\alpha_t )}\ast\epsilon_0^\ast ; where \space \bar\alpha_t=\Pi_{i=1}^T{\sqrt\alpha_i}, \space \epsilon_0^\ast \in N(0, I) \cr &= N(\sqrt{\bar\alpha_t}x_0, (1 - \bar\alpha_t)I)\cr \end{align} $$ \{\{< /katex >\}\} # remove \ here $$ \begin{align} q(x_t|x_0) &= N(\sqrt\alpha_tx_{t-1}, (1 - \alpha_t )I) \cr &= \sqrt\alpha_t x_{t-1} + \sqrt{(1-\alpha_t)}\ast\epsilon_t \cr &= \sqrt\alpha_t(\sqrt\alpha_t x_{t-2} + \sqrt{(1-\alpha_{t-1})}\ast\epsilon_{t-1}) + \sqrt(1-\alpha_t)\ast\epsilon_t \cr &= \sqrt\alpha_t\sqrt\alpha_t x_{t-2} + \sqrt\alpha_t\sqrt{(1-\alpha_{t-1})}\ast\epsilon_{t-1} + \sqrt(1-\alpha_t)\ast\epsilon_t \cr &= \sqrt\alpha_t\sqrt\alpha_tx_{t-2} + \sqrt{(1-\alpha_t\alpha_{t-1})}\ast\epsilon_{t-1}^\ast \quad where \thinspace \epsilon_{t-1}^\ast\in N(0, I) \cr &= ... \cr &= \sqrt{\bar\alpha_t}x_0 + \sqrt{(1 - \bar\alpha_t )}\ast\epsilon_0^\ast ; where \space \bar\alpha_t=\Pi_{i=1}^T{\sqrt\alpha_i}, \space \epsilon_0^\ast \in N(0, I) \cr &= N(\sqrt{\bar\alpha_t}x_0, (1 - \bar\alpha_t)I)\cr \end{align} $$ Adding collapsible Sections in Hugo Got this from here ...